| Item Amend | m} _ _ _ | Amend |
If m is numeric and z=: m} y ,
then $z equals $m , which equals
the shape of an item of y .
The atom j{z is j{(j{m){y . For example:
y=: a.{~(a.i.'A')+i.4 5
m=: 3 1 0 2 1
y ; m ; m}y
+-----+---------+-----+
|ABCDE|3 1 0 2 1|PGCNJ|
|FGHIJ| | |
|KLMNO| | |
|PQRST| | |
+-----+---------+-----+
|
If m is not a gerund, x m} y is formed by replacing
by x those parts of y selected by m&{ .
Thus:y; '%*'(1 3;2 _1)} y +-----+-----+ |ABCDE|ABCDE| |FGHIJ|FGH%J| |KLMNO|KLMN*| |PQRST|PQRST| +-----+-----+$x must be a suffix of $m{y , and x has the same effect as ($m{y)$,x . Thus: y; 'think' 1 2} y +-----+-----+ |ABCDE|ABCDE| |FGHIJ|think| |KLMNO|think| |PQRST|PQRST| +-----+-----+ |
| x (v0`v1`v2)} y | ↔ | (x v0 y) (x v1 y)} (x v2 y) |
| (v0`v1`v2)} y | ↔ | (v1 y)} (v2 y) |
| (v1`v2)} y | ↔ | (v1 y)} (v2 y) |
E1=: <@] C. [
E2=: f`g`[}
E3=: F`g`[}
f=: {:@] * {.@] { [
F=: [: +/ (1:,{:@]) * (}:@] { [)
g=: {.@]
M=: i. 4 5
M;(M E1 1 3);(M E2 1 10);(M E3 1 3 10)
+--------------+--------------+--------------+-------------------+
| 0 1 2 3 4| 0 1 2 3 4| 0 1 2 3 4| 0 1 2 3 4|
| 5 6 7 8 9|15 16 17 18 19|50 60 70 80 90|155 166 177 188 199|
|10 11 12 13 14|10 11 12 13 14|10 11 12 13 14| 10 11 12 13 14|
|15 16 17 18 19| 5 6 7 8 9|15 16 17 18 19| 15 16 17 18 19|
+--------------+--------------+--------------+-------------------+