GSL::Vector.alloc(ary)GSL::Vector.new(ary)GSL::Vector.new(range)GSL::Vector.new(size)GSL::Vector.new(elm0, elm1, ....)GSL::Vector[elm0, elm1, ....]Constructors.
Ex:
irb(main):002:0> v1 = Vector.alloc(5) => GSL::Vector: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 ] irb(main):003:0> v2 = Vector.alloc(1, 3, 5, 2) => GSL::Vector: [ 1.000e+00 3.000e+00 5.000e+00 2.000e+00 ] irb(main):004:0> v3 = Vector[1, 3, 5, 2] => GSL::Vector: [ 1.000e+00 3.000e+00 5.000e+00 2.000e+00 ] irb(main):005:0> v4 = Vector.alloc([1, 3, 5, 2]) => GSL::Vector: [ 1.000e+00 3.000e+00 5.000e+00 2.000e+00 ] irb(main):006:0> v5 = Vector[1..6] => GSL::Vector: [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 ]
GSL::Vector.calloc(size)GSL::Vector.linspace(min, max, n = 10)Returns an GSL::Vector with n linearly spaced elements
between min and max. If min is greater than max,
the elements are stored in decreasing order.
Ex:
irb(main):002:0> x = Vector.linspace(0, 10, 5) [ 0.000e+00 2.500e+00 5.000e+00 7.500e+00 1.000e+01 ] irb(main):003:0> y = Vector.linspace(10, 0, 5) [ 1.000e+01 7.500e+00 5.000e+00 2.500e+00 0.000e+00 ]
GSL::Vector.logspace(min, max, n)Similar to GSL::Vector#linspace except that the values are
logarithmically spaced from 10^min to 10^max.
Ex:
irb(main):007:0* x = Vector.logspace(1, 3, 5) [ 1.000e+01 3.162e+01 1.000e+02 3.162e+02 1.000e+03 ] irb(main):008:0> x = Vector.logspace(3, 1, 5) [ 1.000e+03 3.162e+02 1.000e+02 3.162e+01 1.000e+01 ]
GSL::Vector.logspace2(min, max, n)Similar to GSL::Vector#linspace except that the values are
logarithmically spaced from min to max.
Ex:
irb(main):010:0* x = Vector.logspace2(10, 1000, 5) [ 1.000e+01 3.162e+01 1.000e+02 3.162e+02 1.000e+03 ] irb(main):011:0> x = Vector.logspace2(1000, 10, 5) [ 1.000e+03 3.162e+02 1.000e+02 3.162e+01 1.000e+01 ]
GSL::Vector.indgen(n, start=0, step=1)This creates a vector of length n with elements from start with interval step (mimics NArray#indgen).
Ex:
irb(main):019:0> v = Vector::Int.indgen(5) => GSL::Vector::Int: [ 0 1 2 3 4 ] irb(main):020:0> v = Vector::Int.indgen(5, 3) => GSL::Vector::Int: [ 3 4 5 6 7 ] irb(main):021:0> v = Vector::Int.indgen(5, 3, 2) => GSL::Vector::Int: [ 3 5 7 9 11 ]
If an NArray object is given, a newly allocated vector is created.
Ex:
na = NArray[1.0, 2, 3, 4, 5]
p na <----- NArray.float(5):
[ 1.0, 2.0, 3.0, 4.0, 5.0]
v = Vector.new(na)
p v <----- [ 1 2 3 4 5 ]
#<GSL::Vector:0x367ff4>
In Ruby/GSL, vector lendth is limited within the range of Fixnum. For 32-bit CPU, the maximum of vector length is 2^30 ~ 1e9.
GSL::Vector#get(indices)GSL::Vector#[indices]GSL::Vector#set(i, val)GSL::Vector#[] = Set the i-th element of the vector self to val.
Ex:
irb(main):001:0> require("gsl")
=> true
irb(main):002:0> v = Vector[0..5]
=> GSL::Vector: [ 0.000e+00 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 ]
irb(main):003:0> v[2]
=> 2.0
irb(main):004:0> v[1, 3, 4]
=> GSL::Vector: [ 1.000e+00 3.000e+00 4.000e+00 ]
irb(main):005:0> v[1..3]
=> GSL::Vector::View: [ 1.000e+00 2.000e+00 3.000e+00 ]
irb(main):006:0> v[3] = 9
=> 9
irb(main):007:0> v[-1] = 123
=> 123
irb(main):008:0> v
=> GSL::Vector: [ 0.000e+00 1.000e+00 2.000e+00 9.000e+00 4.000e+00 1.230e+02 ]GSL::Vector#set_all(x)GSL::Vector#set_zeroGSL::Vector#set_basis!(i)This method makes a basis vector by setting all the elements of the vector
to zero except for the i-th element, which is set to one.
For a vector v of size 10, the method
v.set_basis!(4)
sets the vector v to a basis vector [0, 0, 0, 0, 1, 0, 0, 0, 0, 0].
GSL::Vector#set_basis(i)This method returns a new basis vector by setting all the elements of the
vector to zero except for the i-th element which is set to one.
For a vector v of size 10, the method
vb = v.set_basis(4)
creates a new vector vb with elements [0, 0, 0, 0, 1, 0, 0, 0, 0, 0].
The vector v is not changed.
GSL::Vector#indgen!(start=0, step=1)GSL::Vector#indgen(start=0, step=1)GSL::Vector#eachAn iterator for each of the vector elements, used as
v.each do |x| p x end
GSL::Vector#each_indexGSL::Vector#collect { |item| .. }GSL::Vector#printGSL::Vector#fprintf(io, format = "%e")GSL::Vector#fprintf(filename, format = "%e")GSL::Vector#fscanf(io)GSL::Vector#fscanf(filename)GSL::Vector#fwrite(io)GSL::Vector#fwrite(filename)GSL::Vector#fread(io)GSL::Vector#fread(filename)GSL::Vector#cloneGSL::Vector#duplicateThe GSL::Vector::View class is defined to be used as "references" to
vectors. Since the Vector::View class is a subclass of Vector,
an instance of the View class created by slicing a Vector object
can be used same as the original vector. A
View object shares the data with the original vector, i.e. any changes
in the elements of the View object affect to the original vector.
GSL::Vector#subvectorGSL::Vector#subvector(n)GSL::Vector#subvector(offset, n)GSL::Vector#subvector(offset, stride, n)Vector::View object slicing n elements
of the vector self from the offset offset. If called with one
argument n, offset is set to 0. With no arguments, a view is
created with the same length of the original vector.
Ex:
#!/usr/bin/env ruby
require("gsl")
v = Vector[1, 2, 3, 4, 5, 6]
view = v.subvector(1, 4)
p view.class <----- GSL::Vector::View
view.print <----- [ 2 3 4 5 ]
view[2] = 99
view.print <----- [ 2 3 99 5 ]
v.print <----- [ 1 2 3 99 5 6 ]GSL::Vector#subvector_with_stride(offset, n, stride)Vector::View object of a subvector of another vector self
with an additional stride argument. The subvector is formed in the same way
as for Vector#subvector but the new vector view has n elements
with a step-size of stride from one element to the next in the original vector. GSL::Vectir#matrix_view(n1, n2)Matrix::View object from the vector self.
It enables to use the vector as a Matrix object.
Ex:
irb(main):019:0> v = Vector::Int.alloc(1..9) => GSL::Vector::Int: [ 1 2 3 4 5 6 7 8 9 ] irb(main):020:0> m = v.matrix_view(3, 3) => GSL::Matrix::Int::View: [ 1 2 3 4 5 6 7 8 9 ] irb(main):021:0> m[1][2] = 99 => 99 irb(main):022:0> v => GSL::Vector::Int: [ 1 2 3 4 5 99 7 8 9 ]
GSL::Vector#swap_elements(i, j)GSL::Vector#reverseReverses the order of the elements of the vector.
irb(main):025:0> v = Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] irb(main):026:0> v.reverse => GSL::Vector::Int: [ 5 4 3 2 1 ]
GSL::Vector#transGSL::Vector#transposeGSL::Vector#colGSL::Vector#rowTranspose the vector from a row vector into a column vector and vice versa.
irb(main):029:0> v = Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] irb(main):030:0> v.col => GSL::Vector::Int::Col: [ 1 2 3 4 5 ]
GSL::Vector#add(b)GSL::Vector#sub(b)GSL::Vector#mul(b)GSL::Vector#div(b)GSL::Vector#scale(x)GSL::Vector#add_constant(x)GSL::Vector#+(b)self.add_constanb(b)self.add(b)GSL::Vector#-(b)self.add_constanb(-b)self.sub(b)GSL::Vector#/(b)self.scale(1/b)self.div(b)GSL::Vector#*(b)Scale
irb(main):027:0> v = Vector[1, 2] [ 1 2 ] irb(main):028:0> v*2 [ 2 4 ]
Element-by-element multiplication
irb(main):018:0> a = Vector[1, 2]; b = Vector[3, 4] [ 3 4 ] irb(main):020:0> a*b [ 3 8 ]
Inner product
irb(main):023:0> a = Vector[1, 2]; b = Vector[3, 4] [ 3 4 ] irb(main):024:0> a*b.col => 11.0
Vector::Col*Vector -> Matrix
irb(main):025:0> a = Vector::Col[1, 2]; b = Vector[3, 4] [ 3 4 ] irb(main):026:0> a*b [ 3 4 6 8 ]
Matrix*Vector::Col -> Vector::Col
irb(main):029:0> a = Vector[1, 2]; m = Matrix[[2, 3], [4, 5]]
[ 2 3
4 5 ]
irb(main):030:0> m*a <--- Error
TypeError: Operation with GSL::Vector is not defined (GSL::Vector::Col expected)
from (irb):30:in `*'
from (irb):30
irb(main):031:0> m*a.col
[ 8
14 ]GSL::Vector#swap_elements(i, j)GSL::Vector#cloneGSL::Vector#duplicateGSL::Vector.connect(v1, v2, v3, ...)GSL::Vector#connect(v1, v2, v3, ...)Creates a new vector by connecting all the elements of the given vectors.
irb(main):031:0> v1 = Vector::Int[1, 3] => GSL::Vector::Int: [ 1 3 ] irb(main):032:0> v2 = Vector::Int[4, 3, 5] => GSL::Vector::Int: [ 4 3 5 ] irb(main):033:0> v1.connect(v2) => GSL::Vector::Int: [ 1 3 4 3 5 ]
GSL::Vector#absCreates a new vector, with elements fabs(x_i).
irb(main):034:0> v = Vector::Int[-3, 2, -5, 4] => GSL::Vector::Int: [ -3 2 -5 4 ] irb(main):035:0> v.abs => GSL::Vector::Int: [ 3 2 5 4 ]
GSL::Vector#squareCreates a new vector, with elements x_i*x_i.
irb(main):036:0> v = Vector::Int[1..4] => GSL::Vector::Int: [ 1 2 3 4 ] irb(main):037:0> v.square => GSL::Vector::Int: [ 1 4 9 16 ]
GSL::Vector#sqrtsqrt(x_i).GSL::Vector#normalize(nrm = 1.0)GSL::Vector#normalize!(nrm = 1.0)This normalizes the vector self in-place.
Ex:
tcsh> irb
irb(main):001:0> require("gsl")
=> true
irb(main):002:0> a = Vector[-1, -2, -3, -4]
=> GSL::Vector:
[ -1.000e+00 -2.000e+00 -3.000e+00 -4.000e+00 ]
irb(main):003:0> b = a.abs
=> GSL::Vector:
[ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 ]
irb(main):004:0> b.sqrt
=> GSL::Vector:
[ 1.000e+00 1.414e+00 1.732e+00 2.000e+00 ]
irb(main):005:0> b.square
=> GSL::Vector:
[ 1.000e+00 4.000e+00 9.000e+00 1.600e+01 ]
irb(main):006:0> c = b.normalize(2)
=> GSL::Vector:
[ 2.582e-01 5.164e-01 7.746e-01 1.033e+00 ]
irb(main):007:0> c.square.sum
=> 2.0GSL::Vector#maxGSL::Vector#minGSL::Vector#minmaxGSL::Vector#max_indexGSL::Vector#min_indexGSL::Vector#minmax_indexGSL::Vector#sizeGSL::Vector#lenGSL::Vector#sumGSL::Vector#prodGSL::Vector#isnullGSL::Vector#isnull?true if all the elements of the vector self
are zero, and false otherwise.GSL::Vector#equal?(other, eps = 1e-10)GSL::Vector#==(other, eps = 1e-10)true if the vectors have same size and elements
equal to absolute accurary eps for all the indices,
and false otherwise.GSL::Vector#sortGSL::Vector#sort!GSL::Vector#sort_indexGSL::Vector#sort_smallest(n)GSL::Vector#sort_largest(n)GSL::Vector#sort_smallest_index(n)GSL::Vector#sort_largest_index(n)Ex:
irb(main):005:0> v = Vector::Int[8, 2, 3, 7, 9, 1, 4] => GSL::Vector::Int: [ 8 2 3 7 9 1 4 ] irb(main):006:0> v.sort => GSL::Vector::Int: [ 1 2 3 4 7 8 9 ] irb(main):007:0> v.sort_index => GSL::Permutation: [ 5 1 2 6 3 0 4 ] irb(main):008:0> v.sort_largest(3) => GSL::Vector::Int: [ 9 8 7 ] irb(main):009:0> v.sort_smallest(3) => GSL::Vector::Int: [ 1 2 3 ]
GSL::Vector#nrm2GSL::Vector#dnrm2GSL::Vector#asumGSL::Vector#dasumGSL::Vector#to_aThis method converts the vector into a Ruby array. A Ruby array also can be
converted into a GSL::Vector object with the to_gv method. For example,
v = GSL::Vector.alloc([1, 2, 3, 4, 5]) a = v.to_a -> GSL::Vector to an array p a -> [1.0, 2.0, 3.0, 4.0, 5.0] a[2] = 12.0 v2 = a.to_gv -> a new GSL::Vector object v2.print -> 1.0000e+00 2.0000e+00 1.2000e+01 4.0000e+00 5.0000e+00
GSL::Vector#to_m(nrow, ncol)Creates a GSL::Matrix object of nrow rows and ncol columns.
irb(main):011:0> v = Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] irb(main):012:0> v.to_m(2, 3) => GSL::Matrix::Int: [ 1 2 3 4 5 0 ] irb(main):013:0> v.to_m(2, 2) => GSL::Matrix::Int: [ 1 2 3 4 ] irb(main):014:0> v.to_m(3, 2) => GSL::Matrix::Int: [ 1 2 3 4 5 0 ]
GSL::Vector#to_m_diagonalConverts the vector into a diagonal matrix. See also GSL::Matrix.diagonal(v).
irb(main):012:0> v = Vector[1..4].to_i => GSL::Vector::Int: [ 1 2 3 4 ] irb(main):013:0> v.to_m_diagonal => GSL::Matrix::Int: [ 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 ]
GSL::Vector#to_m_circulantCreates a circulant matrix.
irb(main):002:0> v = Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] irb(main):003:0> v.to_m_circulant => GSL::Matrix::Int: [ 5 1 2 3 4 4 5 1 2 3 3 4 5 1 2 2 3 4 5 1 1 2 3 4 5 ]
GSL::Vector#to_tensor(rank, dimension)GSL::Vector#to_naNArray object.
The data are copied to newly allocated memory.NArray#to_gvNArray#to_gslvGSL::Vector object from the NArray object self.NArray#to_gv_viewNArray#to_gslv_viewA GSL::Vector::View object is created from the NArray object self.
This method does not allocate memory for the data: the data of self
are not copied, but shared with the View object created, thus
any modifications to the View object affect on the original NArray
object. In other words, the View object can be used as a reference
to the NArray object.
Ex:
tcsh> irb
irb(main):001:0> require("gsl")
=> true
irb(main):002:0> na = NArray[1.0, 2, 3, 4, 5]
=> NArray.float(5):
[ 1.0, 2.0, 3.0, 4.0, 5.0 ]
irb(main):003:0> vv = na.to_gv_view # Create a view sharing the memory
=> GSL::Vector::View:
[ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 ]
irb(main):004:0> vv[3] = 9
=> 9
irb(main):005:0> na
=> NArray.float(5):
[ 1.0, 2.0, 3.0, 9.0, 5.0 ] # The data are changed
irb(main):006:0> v = na.to_gv # A vector with newly allocated memory
=> GSL::Vector:
[ 1.000e+00 2.000e+00 3.000e+00 9.000e+00 5.000e+00 ]
irb(main):007:0> v[1] = 123
=> 123
irb(main):008:0> v
=> GSL::Vector:
[ 1.000e+00 1.230e+02 3.000e+00 9.000e+00 5.000e+00 ]
irb(main):009:0> na
=> NArray.float(5):
[ 1.0, 2.0, 3.0, 9.0, 5.0 ] # v and na are independent GSL::Vector.graph(y)GSL::Vector.graph(y, options)GSL::Vector.graph(x, y)GSL::Vector.graph(x, y, options)GSL::Vector#graph(options)GSL::Vector#graph(x, options)graph application to plot
vector self. The option graph as "-T X -C" is given by a String.