#*******************************************************************
#**
#** v e m b l d e x m 1 0
#**
#** the diffusion driven by a velocity field w on the
#** 2-dimensional unit cube [0,1]^2. The mesh is read from the
#** vecfem input file (e.g. generated by vemgen2dq).
#**
#** by L. Grosz Karlsruhe, June 1995
#**
#*******************************************************************
#**
#** The data set of this examples has two parts (search for
#** 'cut here'). The first part specifies the problem
#** (please copy it to 'vembldexm10.equation') and the second part
#** defines the control parameters (please copy it to
#** 'vembldexm10.resource'). The FORTRAN code for the solution
#** of the problem is generated by entering
#** 'vembuild maple vembldexm10' into your shell.
#**
#*******************************************************************
#>>>>>>> cut here to get vembldexm10.equation <<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** The problem is the velocity driven, 2-D diffusion problem
#** on the unit cube [0,1]^2 for a searched temperature
#** distribution u1. On the lower boundary X2=0 the temperature is
#** prescribed (=> Dirichlet condition) and at the upper boundary
#** X2=1 a radiation boundary condition is set. At the remaining
#** boundaries X1=0 and X1=1 the domain is isolated.
#**
#** The domain is subdivided into quadrilateral elements and the
#** boundary portion, where the radiation boundary condition is
#** set, is subdivided into line elements. The mesh is given in
#** square.vem or can be generated by vemgen2dq.
#**
#*******************************************************************
#**
#** these are the material constants:
#**
k=0.02 # thermal conductivity
c=10. # heat capacity
alpha=7.6 # radiation coefficient
q=0 # there is no thermal source
#**
#*******************************************************************
#**
#** the driving velocity field:
#**
w1=x1/sqrt(x1^2+x2^2)*10
w2=x2/sqrt(x1^2+x2^2)*10
#**
#*******************************************************************
#**
#** the initial temperature at time 0:
#**
u01=1
#**
#*******************************************************************
#**
#** the temperature at the Dirichlet nodes is :
#**
u1=10
#**
#*******************************************************************
#**
#** the diffusion equation in the weak formulation:
#**
area{ k*(v1x1*u1x1+v1x2*u1x2) + v1*(w1*u1x1+w2*u1x2+c*ut1-q) }+
line{v1*alpha*(u1-1) }=0
#** /|
#** ---- this is the radiation boundary condition
#**
#*******************************************************************
>>>>>>>> cut here to get vembldexm10.resource <<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** The problem has a two dimensional domain and one solution
#** component:
#**
NK=1
DIM=2
#**
#*******************************************************************
#**
#** the is read from the vecfem input file square.vem. Other
#** meshes can be generated by vemgen2dq. the postprocessor is
#** I-DEAS.
#**
MESH_PREP=print
MESH_FILEIN=square.vem
MESH_POSTP=i-deas
MESH_FILEOUT=mesh.unv
#**
#*******************************************************************
#**
#** One processor with maximal 5 Mbytes are used. Maximal 700
#** nodes and 200 elements are allowed:
#**
PROCESS_STORAGE=5
PROCESS_MAXNN=1000
PROCESS_MAXNE=300
#**
#*******************************************************************
#**
#** activate the nonsteady solver :
#**
SOLVER_STEADY=0
SOLVER_H=0.01
SOLVER_T0=0
SOLVER_TEND=1
SOLVER_DT=0.1
SOLVER_INTERP=1 # the solution is computed at equidistant time steps
#**
#*******************************************************************
#**
#** The solution component is written to the file temp.unv
#** and the indicator is written into file error.unv.
#**
OUTPUT_ERRFILE=error.unv
OUTPUT_ERRSCAL=1.
OUTPUT_INDEX=1
OUTPUT_FILE=temp.unv
OUTPUT_TITLE=temperature
#**
#*******************************************************************