#*******************************************************************
#**
#** v e m b l d e x m 0 7
#**
#** large deflection modeling of a 3-dimensional body. The mesh
#** is read from an I-DEAS universal file.
#**
#** by L. Grosz Karlsruhe, Jan. 1995
#**
#*******************************************************************
#**
#** The data set of this example has two parts (search for
#** 'cut here'). The first part specifies the problem
#** (please copy it to 'vembldexm07.equation') and the second part
#** defines the control parameters (please copy it to
#** 'vembldexm07.resource'). The FORTRAN code for the solution
#** of the problem is generated by entering
#** 'vembuild vembldexm07' into your shell.
#**
#*******************************************************************
# cut here to get vembldexm07.equation <<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** (u1,u2,u3) is the searched displacement vector of the
#** 3-dimensional body. E is the modulus of elasticity in kN/mm^2
#** and ny the Poisson number. p [kN/mm^3] is the pressure on the
#** face :
#**
E=1.93*10^2
ny=.3
p=.5
#**
#** where the C-entries are given by the two values E and ny
#**
C11=E*(1.-ny)/(1+ny)/(1-2*ny)
C44=E/2./(1+ny)
C12=E*ny/(1+ny)/(1-2*ny)
#**
#** The restrain conditions are defined in the mesh data set :
#**
u1=prevalue
u2=prevalue
u3=prevalue
#**
#** The vector of distortions in the large deflection modlling
#** in the global Cartesian coordinates is defined by
#**
eps1 = u1x1 + ( u1x1^2 + u2x1^2 + u3x1^2)/2
eps2 = u2x2 + ( u1x2^2 + u2x2^2 + u3x2^2)/2
eps3 = u3x3 + ( u1x3^2 + u2x3^2 + u3x3^2)/2
eps12 = (u2x1+u1x2 + u1x1*u1x2 + u2x1*u2x2 + u3x1*u3x2)
eps23 = (u3x2+u2x3 + u1x2*u1x3 + u2x2*u2x3 + u3x2*u3x3)
eps13 = (u3x1+u1x3 + u1x1*u1x3 + u2x1*u2x3 + u3x1*u3x3)
#**
#** the stress vector has the form (s1,s2,s3,s12,s23,s13). By
#** the Hook law the stress and distortion vector corresponds
#** for isotropic materials by
#**
s1 = C11*eps1 + C12*eps2 + C12*eps3
s2 = C12*eps1 + C11*eps2 + C12*eps3
s3 = C12*eps1 + C12*eps2 + C11*eps3
s12 = C44*eps12
s23 = C44*eps23
s13 = C44*eps13
#**
#** this defines the face normal. the numbering of the area
#** element nodes determines the direction:
#**
n1=tau21*tau32-tau22*tau31
n2=tau12*tau31-tau11*tau32
n3=tau11*tau22-tau12*tau21
n=sqrt(n1^2+n2^2+n3^2)
#**
#** the actual displacements has to minimize the internal energy:
#**
volume { (eps1 * s1 + eps2 * s2 + eps3 * s3 +
eps12 * s12 + eps23 * s23 + eps13 * s13) / 2 } +
area{ p * (u1*n1+u2*n2+u3*n3)/n } = min
#** |
#** |- this defines the load on the face of the body,
#** where only faces are loaded, which are described
#** by area elements. the load work in the normal
#** direction.
#**
#*******************************************************************
# cut here to get vembldexm07.resource <<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** The problem has a three dimensional domain and three solution
#** component:
#**
DIM=3
NK=3
#**
#*******************************************************************
#**
#** One processor with maximal 80 Mbytes are used. Maximal 10000
#** nodes and 6000 elements are allowed:
#**
PROCESS_STORAGE=80
PROCESS_MAXNN=10000
PROCESS_MAXNE=6000
#**
#*******************************************************************
#**
#** The pre- and the postprocessor is I-DEAS:
#**
MESH_PREP=i-deas
MESH_POSTP=i-deas
#**
#*******************************************************************
#**
#** the is read from the I-DEAS universal file probe.unv. the
#** domain is a block of length 50mm and 10mm x 10mm cross
#** section. The vertices at the left hand side are fixed. the
#** right hand side face is discretized by area elements. the
#** mesh uses tetreheron elements of order 2.
#**
MESH_FILEIN=probe.unv
#**
#*******************************************************************
#**
#** The solution components are written to file disp.unv
#** with the title 'displacements' and the error is written
#** to file error.unv :
#**
OUTPUT_INDEX=111
OUTPUT_FILE=disp.unv
OUTPUT_TITLE=displacements
OUTPUT_ERRFILE=error.unv
#**
#*******************************************************************