#*******************************************************************
#**
#** v e m b l d e x m 0 5
#**
#** time-dependent thermal diffusion with temperature-dependent
#** material coefficients on a 3-dimensional body. The mesh is
#** read from an I-DEAS universal file.
#**
#** by L. Grosz Karlsruhe, Jan. 1995
#**
#*******************************************************************
#**
#** The data set of this examples has two parts (search for
#** 'cut here'). The first part specifies the problem
#** (please copy it to 'vembldexm05.equation') and the second part
#** defines the control parameters (please copy it to
#** 'vembldexm05.resource'). The FORTRAN code for the solution
#** of the problem is generated by entering
#** 'vembuild vembldexm05' into your shell.
#**
#*******************************************************************
#**
#** The searched temperature in a thermal diffusion problem is
#** given by partial differential equation of the Poisson type.
#** Here we assumes a 3-dimensional body. On special portions of
#** the boundary of the body the temperature is prescribed
#** (=> Dirichlet conditions) and on the remainder portions
#** convection boundary conditions are assumed. So you have a
#** configuration like this:
#**
#** /---------------------------------------\
#** | /--------\ / ------/ | environment
#** | | hole | / hole / | u1=20
#** | | u1=800 | body / u1= / |
#** | \ ------ / / 1000 / |
#** | / ------/ |
#** \---------------------------------------/
#**
#*******************************************************************
#>>>>>> cut here for vembldexm05.equation <<<<<<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** u1 is the searched temperature distribution.
#**
#**
#** temperature of the environment :
#**
tenv=20
#**
#** thermal conductivity and capacity:
#**
k=0.034*(1.+u1/100.)
c=0.0045
#**
#** no heat generation :
#**
qb=0
#**
#** convection boundary condition :
#**
qs=0.015 * (u1 - tenv)
#**
#** at the begin the body has the environ temperature:
#**
u01=tenv
#**
#** The temperature on the hole surfaces is set by the
#** preprocessor. The value is increased from the initial
#** temperature tenv to the actual value prevalue (this
#** avoids an oscillation in space direction):
#**
u1=(prevalue-tenv) * (1-exp(-100*t)) + tenv
#**
#** The actual temperature distribution u1 is given by the
#** minimal energy:
#**
volume { k * ( u1x1 * v1x1 + u1x2 * v1x2 + u1x3 * v1x3) +
(qb + c*ut1 ) * v1 } +
area { qs * v1 } = 0
#**
#*******************************************************************
>>>>>>>> cut here to vembldexm05.resource <<<<<<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** The problem has a three dimensional domain and one solution
#** component:
#**
DIM=3
NK=1
#**
#*******************************************************************
#**
#** One processor with maximal 20 Mbytes are used. Maximal 5500
#** nodes and 1500 elements are allowed:
#**
PROCESS_STORAGE=20
PROCESS_MAXNN=5500
PROCESS_MAXNE=1500
#**
#*******************************************************************
#**
#** The pre- and the postprocessor is I-DEAS:
#**
MESH_PREP=i-deas
MESH_POSTP=i-deas
#**
#** The mesh data are read from the I-DEAS universal file
#** cooler.unv.
#**
MESH_FILEIN= cooler.unv
#**
#*******************************************************************
#**
#** these are parameters to control the solver:
#**
SOLVER_STEADY=0
SOLVER_TOL=1.E-2
SOLVER_T0=0.
SOLVER_H=.05
SOLVER_TEND=10.
SOLVER_DT=.5
SOLVER_INTERP=1
#**
#*******************************************************************
#**
#** The first solution component is written to file temp.unv
#** with the title 'temperature'. The error indicator is written
#** to file error.unv :
#**
OUTPUT_INDEX=1
OUTPUT_FILE=temp.unv
OUTPUT_TITLE=temperature
OUTPUT_ERRFILE=error.unv
#**
#*******************************************************************