#*******************************************************************
#**
#** v e m b l d e x m 0 4
#**
#** time-dependent velocity driven diffusion on the 3-dimensional
#** unit cube. The mesh is read from an I-DEAS universal file.
#**
#** by L. Grosz Karlsruhe, Jan. 1995
#**
#*******************************************************************
#**
#** The data set of this examples has two parts (search for
#** 'cut here'). The first part specifies the problem
#** (please copy it to 'vembldexm04.equation') and the second part
#** defines the control parameters (please copy it to
#** 'vembldexm04.resource'). The FORTRAN code for the solution
#** of the problem is generated by entering
#** 'vembuild vembldexm04' into your shell.
#**
#*******************************************************************
#>>>>>>> cut here to get vembldexm04.equation <<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** The problem is the velocity driven, 3-D diffusion problem
#** with Dirichlet and Neuman boundary conditions.
#**
#** The domain is [-.5,5]^3 unit cube, where the mesh is
#** generated by I-DEAS. The mesh uses tetrahedron elements of
#** order 2 and triangle elements of order 2 for the boundaries.
#** One Dirichlet condition is set. cube.unv is the I-DEAS
#** universal file.
#**
#*******************************************************************
#**
#** (w1,w2,w3) specifies the driving velocity profile:
#**
w1=0
w2=0
w3=(x1-.5)*(x1+.5)*(x2-.5)*(x2+.5)*16.
#**
#*******************************************************************
#**
#** The functions u01, b1, r1, g1, g2 and g2 are selected, so that
#**
#** u1 = x3 * exp(sin(t))
#**
#** gets the exact solution of the problem.
#**
fac= exp(sin(t))
u01=x3 * fac
b1=u01
r1=w3 * fac + x3 * fac * cos(t)
g1=0
g2=0
g3=fac
#**
#*******************************************************************
#**
#** this is the outer normal direction:
#**
n1 = tau21*tau32-tau31*tau22
n2 = tau31*tau12-tau11*tau32
n3 = tau11*tau22-tau21*tau12
nn = - sqrt( n1^2 + n2^2 + n3^2 )
#** |
#** |- because of the orientation of the area elements in
#** I-DEAS
#**
#*******************************************************************
#**
#** The Dirichlet conditions:
#**
u1=b1
#**
#*******************************************************************
#**
#** the functional equation :
#**
volume{v1x1 * u1x1 + v1x2 * u1x2 + v1x3 * u1x3 +
v1*( w1 * u1x1 + w2 * u1x2 + w3 * u1x3 + ut1 - r1)}
+ area{-v1*(n1*g1+n2*g2+n3*g3)/nn} =0
#**
#*******************************************************************
>>>>>>>> cut here to get vembldexm04.resource <<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** The problem has a three dimensional domain and one solution
#** component:
#**
DIM=3
NK=1
#**
#*******************************************************************
#**
#** One processor with maximal 20 Mbytes are used. Maximal 1000
#** nodes and 1000 elements are allowed:
#**
PROCESS_STORAGE=50
PROCESS_MAXNN=8000
PROCESS_MAXNE=2000
#**
#*******************************************************************
#**
#** the is read from the I-DEAS universal file cube.unv.
#**
MESH_PREP=i-deas
MESH_POSTP=i-deas
MESH_FILEIN=cube.unv
#**
SOLVER_TOL=1.E-2
SOLVER_ERRSTP=0
#**
#*******************************************************************
#**
#** activate the nonsteady solver :
#**
SOLVER_STEADY=0
SOLVER_T0=0
SOLVER_TEND=10
SOLVER_DT=1
SOLVER_INTERP=0
#**
#*******************************************************************
#**
#** The solution components are written into the file solution.unv
#** and the indicator is written into file error.unv.
#**
OUTPUT_FILE=solution.unv
OUTPUT_ERRFILE=error.unv
#**
#*******************************************************************