#*******************************************************************
#**
#** v e m b l d e x m 0 8
#**
#** Bingham fluid in 2-dimensional channel. The mesh is read from
#** an I-DEAS universal file.
#**
#** by L. Grosz Karlsruhe, Jan. 1995
#**
#*******************************************************************
#**
#** The data set of this examples has two parts (search for
#** 'cut here'). The first part specifies the problem
#** (please copy it to 'vembldexm08.equation') and the second part
#** defines the control parameters (please copy it to
#** 'vembldexm08.resource'). The FORTRAN code for the solution
#** of the problem is generated by entering
#** 'vembuild vembldexm08' into your shell.
#**
#*******************************************************************
#>>>>>>> cut here to get vembldexm08.equation <<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** The searched velocity (u1,u2) and pressure u2 in a fluid
#** are the solution of the incompressible Navier-Stokes equation
#** with stress dependent viscosity. It is a system of three
#** nonlinear partial differential equations. The velocity is
#** prescribed on all boundary portions (no slip) and the pressure
#** is prescribed at a single point.
#**
#*******************************************************************
#**
#** material parameters:
#**
#** m - parameter
#** etab - Bingham viscosity
#** tt0 - yield point
#** rho - density
#**
m=1
etab=0.1
tt0=1
rho=1
#**
#** the boundary velocities are defined in the mesh data set :
#**
u1=prevalue
u2=prevalue
u3=1.
#**
#** viscosity :
#**
Ds11=(u1x1+u1x1)/2
Ds21=(u2x1+u1x2)/2
Ds12=(u1x2+u2x1)/2
Ds22=(u2x2+u2x2)/2
D=Ds11^2+Ds12^2+Ds21^2+Ds22^2
eta=2*(etab+tt0/sqrt(2*D)*(1-exp(-m*sqrt(2*D))))
#**
#** stress tensor :
#**
Ts11=eta*Ds11
Ts21=eta*Ds21
Ts12=eta*Ds12
Ts22=eta*Ds22
#**
#** the initial solution avoids that eta is defined in the first
#** iteration step:
#**
u01=x1
u02=x2
u03=1.
#**
#** momentum equations :
#**
area { v1x1*Ts11+ v1x2*Ts12 + rho*v1*(u1*u1x1+u2*u1x2)+v1x1*u3 +
v2x1*Ts21+ v2x2*Ts22 + rho*v2*(u1*u2x1+u2*u2x2)+v2x2*u3
#**
#** equation of continuity
#**
+ v3*(u1x1+u2x2)}=0
#**
#*******************************************************************
>>>>>>>> cut here to get vembldexm08.resource <<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** The problem has a two dimensional domain and three solution
#** component:
#**
DIM=2
NK=3
#**
#*******************************************************************
#**
#** One processor with maximal 20 Mbytes are used. Maximal 1000
#** nodes and 1000 elements are allowed:
#**
PROCESS_STORAGE=20
PROCESS_MAXNN=1000
PROCESS_MAXNE=1000
#**
#*******************************************************************
#**
#** The pre- and the postprocessor is I-DEAS:
#**
MESH_PREP=i-deas
MESH_POSTP=i-deas
#**
#*******************************************************************
#**
#** the is read from the I-DEAS universal file Lshape.unv. the
#** domain is a L-shaped domain with prescribed input and output
#** profile. at the walls the velocity is set to zero. the
#** pressure is prescribed at a single node.
#**
MESH_FILEIN=Lshape.unv
#**
#** approximation:
#**
MESH_REDUCE=001
#**
#*******************************************************************
#**
#** The solution component 1,2 are written to file velo.unv
#** with the title 'velocity' and the third solution component
#** is written to file pres.unv with the title 'pressure'. The
#** considers only the error in the velocities and is written
#** to file error.unv :
#**
OUTPUT_INDEX=110 001
OUTPUT_FILE=velo.unv, pres.unv
OUTPUT_TITLE=velocity,pressure
OUTPUT_ERRINDEX=110
OUTPUT_ERRFILE=error.unv
OUTPUT_ERRSCAL=100.
#**
#*******************************************************************