#*******************************************************************
#**
#** v e m b l d e x m 1 1
#**
#** the coupling of 2-D linear elastic problem (plain stress) and
#** a temperatur diffusion. The mesh is read from an I-DEAS
#** universal file.
#**
#** by L. Grosz Karlsruhe, June 1995
#**
#*******************************************************************
#**
#** The data set of this examples has two parts (search for
#** 'cut here'). The first part specifies the problem
#** (please copy it to 'vembldexm11.equation') and the second part
#** defines the control parameters (please copy it to
#** 'vembldexm11.resource'). The FORTRAN code for the solution
#** of the problem is generated by entering
#** 'vembuild vembldexm11' into your shell.
#**
#*******************************************************************
#>>>>>>> cut here to get vembldexm11.equation <<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** The searched displacement (u1,u2) and temperture distribution
#** u3 in the body are the solution of the coupled conservation
#** law of the stress and the diffusion equation for the
#** temperature. The coupling term is the thermal strain in the
#** conservation law of the stress. The body is loaded by a
#** surface load p=(p1,p2) and is fixed at two point in both
#** directions (=> Dirichlet conditions for component 1 and 2).
#** The temperature is prescribed at all surfaces (Dirichlet
#** conditions for component 3).
#**
#*******************************************************************
#**
#** The geometry in the I-DEAS universal file fins.unv
#** describes the following geometry:
#**
#** surface load
#** ~~~~~~~~
#** |------| |------| |------|
#** | | | | | |
#** | | | | | |
#** | \------/ \------/ |
#** | /---------\ /--------\ | u3=20
#** | | hole | | hole | |
#** | | u3=1000 | body | u3=800 | |
#** | \---------/ \--------/ |
#** u1=0 >\----------------------------------/< u1=0
#** ^ ^
#** u2=0 u2=0
#**
#** The nodes with the Dirichlet conditions for component 1, which
#** is the displacement in x-direction, are indexed in restraint
#** set 1. The nodes with the Dirichlet conditions for
#** component 2, which is the displacement in y-direction, are
#** indexed in restraint set 2. The nodes with the Dirichlet
#** conditions for component 3, which is the temperature, are
#** indexed in restraint set 3. In I-DEAS the displacements in
#** x-direction for all these nodes are set to the value we want
#** to have for the solution at this location in VECFEM.
#** Especially the nodes on the surface of the left hole get the
#** value 1000 but on the surface of the right hole the value 800.
#**
#*******************************************************************
#**
#** material parameter:
#**
nu=.3 # poisson's number
alpha=0.01 # thermal coefficient of expansion
#**
#*******************************************************************
#**
#** the boundary values are defined in the universal file :
#**
u1=prevalue
u2=prevalue
u3=prevalue
#**
#*******************************************************************
#**
#** the external load works on the surface elements:
#**
p1=1000
p2=0
#**
#*******************************************************************
#**
#** the strains of the searched displacements:
#**
eps11=u1x1-alpha*(u3-20)
eps22=u2x2-alpha*(u3-20)
eps12=(u1x2+u2x1)/2
#**
#** the term alpha*u3 considers the thermal expansion of the body.
#**
#*******************************************************************
#**
#** the resulting stresses :
#**
sig11=eps11+nu*eps22
sig22=eps22+nu*eps11
sig12=eps12*(1-nu)/2
#**
#*******************************************************************
#**
#** the conversion equation for the stress:
#**
line{ p1*v1 + p2*v2}
+ area{ v1x1*sig11+(v1x2+v2x1)*sig12+v2x2*sig22 +
#**
#** the diffusion of the temperature
#**
v3x1*u3x1+v3x2*u3x2} +
#**
#*******************************************************************
>>>>>>>> cut here to get vembldexm11.resource <<<<<<<<<<<<<<<<<<<<<<<<<
#*******************************************************************
#**
#** The problem has a two dimensional domain and three solution
#** component:
#**
NK=3
DIM=2
#**
#*******************************************************************
#**
#** One processor with maximal 20 Mbytes are used. Maximal 4000
#** nodes and 1000 elements are allowed:
#**
PROCESS_STORAGE=20
PROCESS_MAXNN=4000
PROCESS_MAXNE=1000
#**
#*******************************************************************
#**
#** the is read from the file I-DEAS universal fins.unv:
#**
MESH_PREP=i-deas
MESH_FILEIN=fins.unv
#**
#** The output format is I-DEAS universal file:
#**
MESH_POSTP=i-deas
#**
#*******************************************************************
#**
#** The problem is a steady problem :
#**
SOLVER_STEADY=1
#**
#*******************************************************************
#**
#** for this problem it is better to use BICO:
#**
SOLVER_MS=2
#**
#*******************************************************************
#**
#** The solution component 1,2, which are the displacements,
#** are written to file disp.unv with the title 'displacents' and
#** the third solution component is written to file temp.unv with
#** the title 'temperature'. The error output considers all
#** components:
#**
OUTPUT_INDEX= 110 001
OUTPUT_FILE= disp.unv, temp.unv
OUTPUT_TITLE= displacements, temperature
OUTPUT_ERRINDEX=111
OUTPUT_ERRFILE=error.unv
OUTPUT_ERRELEM=1 # The error indicator is given on the element
# centre, so that a mesh adaption can be started.
#**
#*******************************************************************